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Abstract—The divide-and-conquer paradigm can be used to express many computationally significant problems, but an 
important subset of these applications is inherently load-imbalanced. Load balancing is a challenge for irregular parallel divide-
and-conquer algorithms and efficiently solving these applications will be a key requirement for future many-core systems. To 
address the load imbalance issue, instead of attempting to dynamically balancing the workloads, this paper proposes an energy 
and performance efficient Dynamic Voltage and Frequency Scaling (DVFS) scheduling scheme, which takes into account the 
load imbalance behavior exhibited by these applications. More specifically, we examine the core of the divide-and-conquer 
paradigm and determine that the base-case-reached point where recursion stops is a suitable place in a divide-and-conquer 
paradigm to apply the proposed DVFS scheme. To evaluate the proposed scheme, we implement four representative irregular 
parallel divide-and-conquer algorithms, tree traversal, quicksort, finding primes, and n-queens puzzle, on the Intel Single-chip 
Cloud Computer (SCC) many-core machine. We demonstrate that, on average, the proposed scheme can improve performance 
by 41% while reducing energy consumption by 36% compared to the baseline running the whole computation with the default 
frequency configuration (400MHz).  

Index Terms—DVFS, Divide-and-conquer, Intel SCC, Load Imbalance 
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1 Introduction

ivide-and-conquer is a well-known and important 
algorithmic paradigm suitable for execution on 
multi-cores, clusters and grids due to the fact that 

distinct subproblems can be solved independently and 
simultaneously. However, parallel divide-and-conquer 
applications are notorious for exhibiting load imbalance 
[1] but this kind of irregular parallel divide-and-conquer 
algorithm is an important subset of the class of parallel 
divide-and-conquer algorithms [2]. Many dynamic load 
balancing schemes for irregular parallel divide-and-
conquer algorithms have been proposed [1], [3]. These 
schemes seek to dynamically schedule the workloads and 
to make the workloads distributed among cores as evenly 
as possible. However, as applications become more com-
plex and adaptive, balancing the load becomes increas-
ingly difficult [4]. 

On the other hand, the Dynamic Voltage and Fre-
quency Scaling (DVFS) technique can help balance the 
execution time of the cores with different workloads by 
adjusting the operating frequency of the cores [4]. This 
paper aims at developing a DVFS scheme that can be 
used to achieve performance and energy efficiency with 
inherently load-imbalanced parallel divide-and-conquer 
applications. Since current DVFS techniques experience a 
large overhead when adjusting the voltage, the proposed 
scheme in this paper focuses on solely changing the fre-
quency level. We have implemented the proposed scheme 

and evaluated the corresponding performance and power 
on the Intel Single-Chip Cloud Computer (SCC) [5], a 
tiled, many-core processor with DVFS.  

2 Background 

2.1 The Power Management of SCC 

SCC is a many-core research chip developed by Intel® 
 
 

Labs. It was targeted for many-core research projects [6], 
[7].  One of the key features of SCC is the user controllable 
dynamic frequency and voltage regulation capability. 
RCCE [8] (pronounced “rocky”), a small library for 

many-core communication, provides some power man-
agement APIs for programmers to vary frequency and 
voltage of SCC. RCCE provides a low latency power 
management API (about 20 cycles [9]), 
RCCE_set_frequency_divider, for programmers to only 
change the frequency level. While the frequency can in 
principle be changed on a per tile basis, 
RCCE_set_frequency_divider currently sets the frequency of 
cores collectively within a 2X2 array of tiles. In this paper, 
we have modified the RCCE_set_frequency_divider to sup-
port shifting the frequency on an individual tile basis.  

2.2 The Skeleton of A Generic Parallel Divide-and-
conquer Paradigm 

We use the parallel quicksort algorithm shown in Fig. 1, 
taken from Chen et al.  [10], as an illustration of how the 
skeleton of a generic parallel divide-and-conquer para-
digm is composed of three phases. In the first phase, the 
Division Phase (line 9 to 12), the original problem is recur-
sively divided into subproblems and sent to correspond-
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ing cores. The division phase ends when the total number 
of cores is committed. In the second phase, the Computa-
tion Phase (line 15), all cores begin to work in parallel on 
their own subproblems using a generic sequential proce-
dure. In the third phase, the Combination Phase (line 13), 
the partial solutions are combined to obtain the solution 
of the original problem.  Fig. 2(a) shows a representative 
execution pattern of the generic parallel divide-and-
conquer paradigm using 4 cores. 
2.3 The Benchmarks 

N-Queens Puzzle: The goal is to find out how many ways 
there are to place N queens on an NxN chessboard so that 
no queen can take another. In our parallel implementation, 
the problem size is a 16 x 16 chessboard. A Core i is in 
charge of finding the subset 15 x 16 chessboard with all 
the possible solutions where the first queen have been 
placed in column i on the first row. Since the general algo-
rithm to solve the N-Queens problem uses backtracking 
[11], the computation time of each core will be different 
even though we assign the same size of chessboard for 
each core.  This is why load imbalance occurs. 
Finding Primes:  The goal is to find out how many prime 
numbers are in a range [a, b] ([1, 50000000] for us). This 
range is evenly divided into two parts which are sent to 
the corresponding cores and then divided recursively 
until all 16 cores are involved in the computation. The 
imbalance occurs because the execution time of the serial 
prime checking function varies not only with the input 
amount but also with the input value. 
Quicksort: The goal is to sort an unsorted sequence. In 
our parallel implementation, the problem size is a 1MB 
unsorted sequence. This unsorted sequence is recursively 
divided and sent to the corresponding cores until all 16 
cores are allocated. Since the division phase of quicksort 
randomly splits the unsorted sequence, the cores will re-
ceive different lengths of unsorted sub-sequences and 
thus load imbalance occurs. 
Tree Traversal: The goal is to traverse a binary search tree 
and then calculate the sum of the values of all tree nodes. 
The problem size is a 10M-node binary search tree. We 
recursively remove the root of the tree and assign the sub-
trees to the corresponding cores until all 16 cores partici-
pate. Since we build the binary search tree by inserting a 

new node with a randomly generated value, the tree will 
be unbalanced and thus the size of the subtree assigned to 
each core is different, causing a certain load imbalance. 

3 Proposed Approach 

Fig. 2(b) shows the general idea of the proposed scheme. 
By increasing the frequency of the cores with a heavy 
workload, the critical execution path may actually be ac-
celerated and thus the overall performance could be im-
proved. At the same time, we can lower the frequency of 
the cores with light workloads to reduce the power con-
sumption even if this implies a longer execution time, as 
long as the resulting increase in execution time for these 
cores in not so large to cause them to become an execution 
bottleneck. Moreover, the execution time of the cores with 
uneven workloads might not be perfectly balanced; there-
fore, some cores must be busy-waiting for messages from 
other cores, providing us with an opportunity for further 
energy saving without loss of performance by running 
the busy-waiting cores at the lowest frequency. 

When to apply DVFS is one key point of our proposed 
scheme. Our scheme takes advantage of one fundamental 
trait of the parallel divide-and-conquer paradigm: work-
loads are recursively divided into smaller portions and 
sent to other cores until the base case, the point where 
recursion is ended, is reached, at which point the cores 
independently and simultaneously work on their own 
workloads. The beginning of the computation phase is a 
good point (i.e., line 15 in Fig. 1) at which we can check 
the core workloads and then scale the core to the corre-
sponding proper frequency. 

How to select the proper frequencies for the cores is yet 
another key point. We select the top five frequency levels 
(800 MHz, 533MHz, 400MHz, 320MHz, and 266MHz) 
provided by SCC as the available frequencies the core can 
dynamically switch and we assume the default frequency 
to be 400MHz. The frequency selecting strategy of this 
research is shown in Fig. 3. Since the total time taken by a 
sequential procedure is approximately proportional to the 
total size of the workload, if we know the ratio between 
the execution time and the workload size, we can esti-
mate the computation time of each core in computation 
phase at different frequency levels by multiplying the 
actual workload with the ratio. This ratio can be obtained 
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Figure 2. (a) A representative execution pattern of the generic parallel 
divide-and-conquer paradigm running on four cores. (b) The corre-
sponding frequency scheduling idea proposed in this paper. 

00 Input：：：：Unsorted sequence A[1,N], 2m processors are used                           
01 Output: Sorted sequence A[1,N]
02 Begin
03 para_quicksort(A,1, N, m, 0)
04 End
05
06 Procedure para_quicksort(A, i, j, m, id)
07 Begin
08 if m!=0 then
09 Cid calls patrition(A, i, j) to get pivot r
10 Cid sends A[r+1, j] to Cid+2m-1

11 Cid calls para_quicksort(A, i, r-1, m-1, id)
12 Cid+2m-1 calls para_quicksort(A, r+1, j, m-1, id+2m-1)
13 Cid+2m-1 sends A[r+1, j] back to Cid
14 else

Cid calls freq_select() to operate at proper Freq. 
15 Cid calls quicksort(A, i, j)

Cid reverts to default Freq.
16 return 
17 end if
18 End  

Figure 1. The parallel quicksort algorithm used in this paper and the 
proposed scheduling scheme (the shaded potions).  

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 13, NO. 1, JANUARY-  2014  JUNE14



 

off-line or it can be derived by running a small piece of 
the sequential code when the program starts. The nota-
tion “exe_time@num” in Fig. 3. refers to the predicted 
execution time of a core handling the actual workload at 
num MHz.  

Also, we need a reference point so that we can decide 
whether the core frequency should be scaled up or down. 
In general, we expect each core to receive an equally-sized 
subworkload, referred to as the expected balanced workload. 
We choose the computation time of the expected balanced 
workload running at the top frequency (800MHz), referred 
to as balanced_exe_time@800 in Fig. 3, as our reference 
point. Then, we strive to select the proper frequency for 
each core to make them complete their computations 
around this time. For example, if exe_time@400 is smaller 
than balanced_exe_time@800, which means there is some 
room for us to slow down the core frequency to save 
power, we could keep the frequency at 400MHz or lower 
it to 320MHz or 266MHz. If exe_time@320 is larger than 
balanced_exe_time@800, which means the execution time 
of the core scaled down to 320MHz might become the 
bottleneck, we keep the core running at the default fre-
quency. Other selecting strategies in Fig. 3. can be simi-
larly designed. 

Defining the actual workload and the expected bal-
anced workload of applications is another key point. De-
fining the actual workload and the expected balanced 
workload varies from benchmark to benchmark. We iden-
tify them for the four benchmarks as follows: 

N-Queens Puzzle: since the execution of a backtracking 
algorithm can be illustrated using a recursion tree and the 
recursion tree is unique to each input problem size, we 
can consider the recursion tree as known information. The 
expected balanced workload can be defined as total nodes 
of the recursion tree/16. Also, the actual workload is the size 
of the sub-recursion tree assigned to the core. 

Finding Primes: the imbalance of finding primes comes 
from the input value as well as input amount. Neverthe-
less, our parallel implementation distributes workloads 
evenly among the cores; therefore, the computation time 
is in proportion to the input values the cores get. Since the 
original range [1, 50000000] is evenly divided into 16 sub-
ranges for 16 cores, Core 0 will handle the [1, 3125000], 
Core 1 will handle the [3125001, 6250000], and so forth. 
Based on this workload assignment, the execution time 
will linearly increase from Core 0 to Core 15 and the exe-
cution time of Core 7 will be the average point; therefore, 

we can define the expected balanced workload as 
[21875001, 25000000], the subrange that Core 7 received, 
and the actual workload is the subrange assigned to the 
core. 

Quicksort: since the problem size is known at the be-
ginning of program execution, we can easily define the 
expected balanced workload as 1MB/16. Moreover, even if 
the sequence is split randomly in the division phase, we 
can easily know the actual workload of each core at the 
beginning of the computation phase. 

Tree Traversal: just as in Quicksort, since the tree size 
is known at the beginning of program execution, we can 
define the expected balanced workload as 10M/16 nodes. 
However, since each core only receives the pointer to the 
root of its own subtree, the subtree size (the actual work-
load) of each core cannot be known during the computa-
tion phase. We need an additional parameter in each tree 
node to record its corresponding subtree size during the 
generation of the tree. 

How to identify the busy-waiting cores is yet another 
key point. It is easy to identify whether a core is busy-
waiting or not in an RCCE program, which is an MPI-like 
SPMD programming style. In an RCCE program, a busy-
waiting core will enter a busy-waiting state by calling 
RCCE_wait_until. RCCE_wait_until implements a busy-
waiting loop (spinlock) continuously checking whether a 
flag in memory is set or not. We have modified the 
RCCE_wait_until to make the core calling this function 
run at the lowest frequency, 100MHz, to reduce power 
consumption. The core frequency will return to the de-
fault frequency after the core exits RCCE_wait_until.  

4 Experimental Evaluation 

4.1 Experimental Environment 

We conducted our experiments by running the four 
benchmarks on 16 cores of SCC. Cores run at 533 MHz, 
the mesh and the memory run at 800MHz, and the volt-
age for all settings is nominally 1.1V. We run the bench-
marks at the default frequency (400MHz) for the whole 
execution as the baseline, and then at the top frequency 
(800MHz) for the whole execution as another baseline, 
and finally with the proposed scheme.  
4.2 Experimental Results 

Fig. 4(a) shows the execution time of the proposed 
scheme and the two baselines. Overall, the proposed 
scheme running with 16 cores can obtain 28%, 40%, 48%, 
and 49% (about 41% on average) of improvement in exe-
cution time on tree traversal, quicksort, finding primes, 
and n-queens puzzle, respectively, with respect to the 
baseline_1 (400MHz). In addition, it can achieve almost 
the same execution time (about 2% higher on average) as 
that of baseline_2 (800MHz). 

Fig. 4(b) shows the power consumption for the pro-
posed scheme and the two baselines running the busy-
waiting periods at 100MHz and original frequencies. The 
original load balance values, defined by Etinski et al. [12], 
of four benchmarks without the proposed DVFS schedul-
ing are also shown along with the benchmark names. We 
can observe that the more load balance the benchmark 
exhibits the less power reduction that busy-waiting at 100 

00  Procedure freq_select ()
01   Begin
02 if  exe_time@400 > balanced_exe_time@800 then
03 if exe_time@533 > balanced_exe_time@800 then
04 Let Cid operate at Freq. 800MHz
05 else
06 Let Cid operate at Freq. 533MHz
07 else
08 if exe_time@320 < balanced_exe_time@800 then
09 if exe_time@266 < balanced_exe_time@800 then
10 Let Cid operate at Freq. 266MHz
11 else
12 Let Cid operate at Freq. 320MHz
13 else
14 Let Cid operate at Freq. 400MHz
15   End  

Figure 3. The frequency selecting strategy proposed in this paper  
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MHz can achieve. The proposed scheme running the 
busy-waiting periods at the lowest frequency can further 
yield 6%, 4%, 2%, and 1% (about 3% on average) of reduc-
tion in power on tree traversal, quicksort, finding primes, 
and n-queens puzzle, respectively, with respect to the 
proposed scheme running the busy-waiting periods at 
default frequency. On average, the proposed scheme run-
ning the busy-waiting periods at the lowest frequency can 
yield 9% and 14% of reduction in power consumption 
compared to the 800MHz baseline running the busy-
waiting periods at the lowest and original frequencies, 
respectively. 

Fig. 4(c) shows the overall energy consumption of the 
proposed scheme and the two baseline schemes. These 
values are calculated by multiplying the overall power 
consumption with the total execution time for each 
scheme. On average, the proposed scheme running with 
16 cores obtains 36% of reduction in energy consumption 
with respect to the 400MHz baseline and 13% with re-
spect to the 800MHz frequency baseline. 

5 Conclusions 

In this paper, we have presented an energy and per-
formance efficient DVFS scheduling scheme to address 
the load imbalance issue often encountered in parallel 
divide-and-conquer algorithms. We have validated the 

primary idea on the Intel SCC many-core platform with 
four representative irregular divide-and-conquer algo-
rithms. On average, the simulation results have shown 
that the proposed scheme is able to improve performance 
by 41% while reducing energy consumption by 36% com-
pared to the baseline configuration running the whole 
computation with the default frequency (400MHz). 
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Figure 4. Results of the proposed scheme and the two baselines. 
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